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ABSTRACT 
Positron emission tomography and computed tomography (PET-CT) imaging is a tool extensively 

used for detecting liver lesions (FLLs). Still, distinguishing these contemporary styles will ignore some of the 
information astride the two processes while features interact, count the collaborative literacy of the point chart 
of various judgments, and not make sure that shallow and deep aspects regard each other adequately. In this 
paper, our proposed model can attain feature relations along the multi-modal channels by sharing each down 
sampling block among two encoding branches to remove deceiving features. Also, we integrate feature maps 
of various plans to derive spatially varying fusion maps and elaborate the lesion's information. In addition, 
we initiate a resemblance loss function for thickness constraints in the event that the forecasts of separated 
refactoring branches for the same field differ a lot. We estimate our model for liver excrescence segmentation 
using a PET-CT scan dataset, compare our system with the baseline approach for multi- modal (multi-
branches, multi-channels, and cascaded networks), and also justify that our system has a fully advanced 
delicacy (p <0.06) than the base line models. 
 

Keywords: convolutional neural networks, liver lesion segmentation, Ultrasound, multi-modal 
collaborative literacy, PET- CT 
 

1. INTRODUCTION 
 

One of the fatal and utmost dangerous 
conditions in the world is liver complaint. Around 
2.8 of deaths in India occur as a result of liver 
complaint each time. Due to its unpretentious 
symptoms, liver complaint can be grueling to 
diagnose in its early stages. Constantly, the 
symptoms can show up only when it's too late. Liver 
lesion segmentation plays a very important role in 
computer aided prognosis and treatments. It also 
helps to identify other disease by 

 

                     T. Haripriya  
Research Scholar, School of computing Sciences, 
VISTAS, Chennai, India 
email :  hariswt9@gmail.com 

                                                                                        

P-ISSN 0973-9157 
E-ISSN 2393-9249                                                   

 36                                                              

image guided surgery and the visualization of 
medical data for clinical diagnosis and pathogeny 
research. The high likeness in intensities between the 
liver tissue and the adjacent organs, the diversity in 
the liver shape, and the random manifestations of 
lesions, furthermore it is a challenging task to 
segment the normal from the infected regions from 
CT images. Image-based automatic segmentation of 
liver tumors can help surgeon to accurately locate the 
tumors, their sizes and visualize the relationship 
among the cancer lesions and the enclosing blood 
vessels and liver tissue. While, we using manual 
segmentation the clinical application is time 
consuming. In a multiplicity of medical imaging 
techniques, computed tomography (CT) images are 
frequently used in computer-aided prognostic and 
surgical planning due to their high signal-to-noise 
ratio and better spatial plan. In spite of the CT only 
reflects the structures of organs without providing 
any practical details. Cancer cells are generally more 
metabolically active, and various kind of tumors have 

mailto:hariswt9@gmail.com
https://doi.org/10.56343/STET.116.017.002.006
                www.stetjournals.com



J. Sci.    Trans. Environ. Technov.2023                                                                                                                             37 
 
a preference for glucose in terms of energy sources, 
which is the reason that 18F flurodeoxyglucose (18F-
FDG) PET can be used for tumor visualization. PET is 
an imaging technology that shows the bio molecular 
metabolism, receptor and neuromedia activity in 
living organisms, with a high sensitivity and a high 
specificity, and can therefore be used to assist in 
diagnosis. 

 
Hepatocellular carcinoma (HCC) has various shapes, 
sizes, locations and pathological properties for each 
patient. Infig.1, however lesion as shown in first two 
columns, sometimes we can locate only mutilated 
lesions on CT or PET imaging as shown in the 
remaining columns. In these cases, when the lesions 
and the bounding tissues have a similar anatomical 
structure on CT images, PET can distinguish them for 
their different metabolic intensities; meanwhile, CT 
can locate the necrotic regions which show a low 
metabolism on the PET images. Therefore combining 
PET and CT scans not only provides more 
information about lesions and their adjacent tissues, 
but it also can make imaging features complement 
each others. In contrast, multi-modal medical scans 
have been used for organ lesions segmentation and 
detection by deep CNN and handcrafted features.  
 

 
a)                 b)                               c) 

    

Figure 1 (a) Obvious lesions (b) Obvious lesions 
(c) Obvious 

 

Figure 1: PET scans are unified to the same 
resolution as CT through interpolation, then CT 
and PET images are processed by affine alignment. 
The original CT images (the first row), their 
corresponding PET images (the second row) and 
the ground truth of liver and liver lesions (the third 
row). (A) An example of obvious lesion regions on 
both PET and CT images, (B) Shows tumors that 
are obviously reflected on CT images but hidden in 
the PET images, and (C) illustrates cases where 

lesions are obviously distinguished on PET images 
but hardly on CT images. Therefore, multi-modal 
PET-CT scans can complement each others to 
obtain a better liver lesion segmentation 
performance. 
 
They put out a technique for fuzzy Markov 
random field modelling to automatically segment 
lung tumors on PET-CT data. They applied 
random walks to PET and CT imaging, 
respectively, and summarised two weighted 
probability maps to get the final prediction 
findings. U-Net and V-Net are the two most widely 
used networks for medical image segmentation 
tasks because of their straightforward but efficient 
CNN designs. In addition, many other successful 
variant networks built on UNet exist. Blocks are 
crucial for the final segmentation outcome and are 
taken from all encoders; therefore a network 
structure that employs feature information is used. 
They presented a deep learning method for tumor 
segmentation on PET-CT images of patients with 
head and neck malignancies. We contend that each 
intermediate PET block can effectively give 
pathological information, and the CT block should 
provide anatomical information during feature 
extraction, taking into consideration the structural 
and spatial consistency between two blocks at the 
same level. Therefore, we suggest a brand-new 
Shared Down-sampling Block (SDB) that the CT 
and PET encoder blocks at the U-Net and V- Net 
are the two most widely used networks for medical 
image segmentation tasks because of their straight 
forward but efficient CNN designs. In addition, 
many other successful variant networks built on U 
Net exist. Blocks are crucial for the final 
segmentation outcome and are taken from all 
encoders; therefore a network structure that 
employs feature information is used. Recently, 
only a few methods have been proposed for liver 
lesions segmentation on multi-modal PET-CT 
scans. Existing multi-modal co-learning methods 
can mainly be summarized as follows: feature 
extraction from each modality, followed by a 
combination of modality-specific features with 
CNN architecture or traditional methods. For the 
generation of the probability maps from the 
different modalities, current deep learning 
methods have separate encoder architecture for 
each modality. Traditional methods apply 
wavelet-based and transform-based theory for 
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feature decomposition, local energy, and weighted 
regional variance for feature extraction and feature 
fusion. However, there is a common drawback 
with the existing multi-modal feature extraction 
methods. The CT encoder blocks benefit only from 
the upper levels that generate CT probability 
maps. On the other hand, the PET encoders at the 
upper layer do not contribute to anything. 
Considering the structural and spatial consistency 
between two blocks at the same level, we argue 
that each intermediate PET block can provide 
effective pathological information, and the CT 
block should provide anatomical information 
during feature extraction. Hence, we propose a 
novel shared down sampling block (SDB) that can 
be used by the CT and PET encoder blocks at the 
same depth within the network. 
 
The authors propose three new feature co-learning 
methods for PET-CT image segmentation. The first 
involves a single feature decoder (SDB) that 
extracts pathological information from PET-CT 
data, while the second involves combining fusion 
features volumes in HFCM. Hierarchical skip 
connections transmit more features information 
from FCBs to the decoder branch, prioritizing 
lesions features. Two image refactoring branches 
are designed, one without HFCM and the other 
focusing on hidden lesions in fusion feature maps. 
The decoder branches segment the lesions in the 
same PET-CT volumes, and a similarity loss is 
proposed to penalize discrepancies between 
predictions. 
 

II. MATERIALS 
 

A. Datasets 
 

In our research, we make use of the 100 FDG PET-
CT scans that were split into 10 subsets for 10-fold 
cross validation.The liver contour and lesion 
masks have been labelled by skilled radiologists 
using a dataset that has been provided by Shanghai 
BNC. 
 
In this dataset, there are between 1 and 30 thorax-
regional tumors per case and there are between 5 
and 109 slices of liver lesions. A 3D tumor's volume 
can range from 624 cm3 to 939053 cm3, and the 
maximum cross-sectional area of liver tumors is 
between 129 cm2 and 14026 cm2. Because of the 

wide range of tumor volume and its variations, it 
can be inferred from the analysis of the materials 
above that automatic liver lesion segmentation is a 
difficult task. 

 

B. Data Preprocessing 
 

In our experiment, we pre-process the PETCT 
images before supplying them to our network in 
an effort to improve performance and hasten 
convergence. Since the PET pixel values range 
from 0 to several hundred thousands, they are 
more difficult to normalize than CT data, 
according to study of the raw data. Standard 
Uptake Value (SUV) conversion is done for PET 
pixel data. The PET-CT data must first be 
resample to be consistent at 256*256 pixels (x-y 
axis) before being subjected to co-learning. To 
combine the characteristics of the multi-modal 
images for registration, the thickness of the PET 
and CT scans must also be unified. We also use 
an affine alignment to prevent the PET-CT 
images from shifting. Physicians commonly use 
affine registration for PET-CT tumor volume 
delineation, with affine transformation for 
simplicity. In this research, liver lesions locations 
on PET and CT images are consistent. 

 
Figure. 2: Overall Architecture 

Figure. 2: The proposed network methods have an 
overall architecture consisting of SDB (shared 
down-sampling block), FCB (feature co learning 
block), and US (up-sampling block). The first layer 
enters DB-1, followed by DB-2 and DB-3, with skip 
connections from FCB to the right decoder branch. 
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The proposed Hierarchical Feature Co-Learning 
Module (HFCM) consists of four FCBs with 
hierarchical skip connections. The left decoder 
branch is marked as T1, and the right one as T2. 

 

 

     CT                PET              before             after 

Figure  3: Visual comparison of the results 
obtained by affine alignment compared to the 
original PET-CT fusion image. The first two 
columns show original CT images and PET images, 
the following two columns show the fusion results 
of original PET-CT pairs and results after affine 
alignment. 
 
III. METHODS 
This paper uses V-Net and morphological 
processing to extract liver contours from masked 
PET-CT images, forming a fusion co-learning 
network with two main parts. They are SDB and 
HFCM. 
 

A. Liver Contour 
V-Net model extracts liver contour from CT scans, 
combined with PET data for liver lesion 
segmentation.The CT regions outside the liver 
contour to -200, and set the values of the same 
positions on the PET images to 0.01. Therefore, the 
liver masks can avert the impact of Irrelevant 
organs and tissues. 
 

B. Shared Down sampling block 
Multi-modal data is often extracted using multiple 
encoder branches for segmentation or detection 
tasks. This approach does not benefit PET and CT 
scans, but it ensures consistent lesions at the same 
locations. Unique labels are used in the learning 
process, and CT images can be attenuated and 
corrected if the PET image's anatomical structure is 
clear. CT images can be attenuated 

 

C. Hierarchical feature co-learning module 
Deep CNN features extraction varies between 
shallow and deep layers, with shallow structures 
capturing simple features like edges and 
boundaries, while deep layers capture higher-level 
features due to their broader receptive field and 
more convolution operations. To fuse lesions 
information at different depths, HFCM is 
proposed. The hierarchical feature co-learning 
module consists of two components: the feature co-
learning block combining anatomical and 
functional features from PET and CT, and the up-
sampling block resizing fusion feature volumes to 
derive spatially varying fusion maps. The feature 
volumes are fed to decoders at different levels. 
Hierarchical skip connections generate more 
information exchange between the FCB and 
decoder blocks, resulting in liver lesion features 
being prioritized during image reconstruction. 
 

D. Loss function 
Medical image segmentation often faces 
imbalances in category labels, leading to various 
loss functions designed to address this issue. Focal 
loss aims to address the imbalance between 
background and foreground in object detection, 
while dice loss compares prediction results with 
labels. Tversky loss is a sum of weighted dice loss 
and focal loss, with the weight determining 
precision or sensitivity. This paper adopts dice loss 
for liver contour segmentation and Focal Tversky 
loss function for liver lesions segmentation. 

 

IV. EXPERIMENTS 
The study validates liver contours and lesions 
segmentation experiments on 100 PET-CT scans 
using pre-processing and hyper-parameters. 
Repeated tests and ANOVAs are performed on 
each model, revealing statistically significant 
differences between models. The experimental 
settings and parameters are presented, and the 
SDB module is tested. The HFCM method is 
adopted, and the method is compared with 
existing methods to prove its effectiveness. 

 

A. Training and Testing 
The proposed method for liver lesions 
segmentation consists of two stages: stage-1, which 
deals with liver contour segmentation, and stage-
2, which covers liver lesion segmentation. Masked 



40          J. Sci.    Trans. Environ. Technov.2023 
 
PET-CT scans are used for all contrastive methods. 
The liver contour segmentation process involves 
resampling the CT series to a uniform resolution, 
retaining blocks containing the liver organ, and 
truncating block values to the range of -200 to 400 
HU. The data is fed into V-Net for liver contour 
segmentation training, and the model converges 
after 80 epochs. Morphological post-processing is 
performed after the deep network prediction to 
improve results. The liver is a connected organ in 
the human body, but the prediction map may have 
isolated areas. The segmentation edges are 
optimized using expansion corrosion, and the 
largest connectivity domain in 3-dimensional 
space is chosen as the liver profile. Morphological 
post-processing methods improve the dice score of 
liver contour segmentation by 1.05% (95:65% vs. 
96:70%). 
 
The proposed network focuses on accelerating 
network convergence and ignoring irrelevant 
information to focus on lesions. The network is 
implemented using the Pytorch library and employs 
gradient descent optimization algorithms. The 
training process is performed on a PC with a NVIDIA 
Tesla V100 GPU, taking 12 hours for 300 epochs. The 
prediction result is the sum of outputs generated by 
the two branches, with their weights set to be the 
same as the weights used in the training phase. 
 

 
      CT        PET           Ground     FCB     HFCM     FCB        HFCM 
                             Truth                               differences   differences   

 

Figure 4: Comparison of FCB and HFCM 
segmentation results based on three cases. The 
first three columns are CT, PET and the ground 
truth images, the following two columns show the 
prediction results of the models with FCB and 
HFCM, and the last two columns present the 
difference between the prediction results and the 

ground truth. Blue, green and red delineations 
mean normal liver regions, liver lesions and 
where lesions were incorrectly segmented, 
respectively. 

 
TABLE 1: Comparison of baseline models with 
and without SDB. The segmentation 
performance is measured with the dice score (%), 
[Mean     Standard Deviation] and hausdorff 
distance (mm). In the results of repeated 
statistical analysis, if the value of PR is lower 
than 0.05, the difference is statistically 
significant.          

Metrics of experimental scores 
 

Model Dice per 
case (%) 

Dice 
global 

(%) 

Hausdorff 
Distance 

(mm) 

2D U-Net two-
encoder 

57.73 ± 
1.07 

60.00 ± 
1.49 

68.2014 

2D U-Net two-
encoder +SDB 

59.02 ± 
0.92 

61.57 ± 
1.13 

64.3729 

3D V-Net two-
encoder 

64.38 ± 
1.01 

64.35 ± 
2.07 

60.0249 

3D V-Net two-
encoder + SDB 

65.67 ± 
0.84 

66.65 ± 
1.25 

57.6326 

 

Metrics of experimental scores 
 

Model Dice per 
case (%) 

Dice 
global 

(%) 

Hausdorff 
Distance 

(mm) 

2D U-Net two-
encoder 

58.75 ± 
1.08 

65.00 ± 
1.50 

69.2015 

2D U-Net two-
encoder +FCB 

62.84 ± 
1.05 

63.79 ± 
0.75 

59.2646 

2D U-Net two-
encoder + 
HFCM 

64.75 ± 
0.95 

65.17 ± 
1.08 

54.6039 

3D V-Net two-
encoder 

65.39 ± 
1.02 

65.36 ± 
3.08 

61.0349 

3D V-Net two-
encoder + FCB 

66.82 ± 
1.07 

68.42 ± 
1.12 

58.2935 

3D V-Net two-
encoder + 
HFCM 

69.15 ± 
0.95 

69.78 ± 
1.02 

58.7079 
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TABLE II: Effect of FCB and HFCM based on 
baseline models. HFCM consists of several FCBs 
with hierarchical skip connections. The 
performance is measured with dice per case score 
(%), [Mean Standard Deviation] and hausdorff 
distance (mm). In the results of repeated statistical 
analysis, if the value of PR is lower than 0.05, the 
difference is statistically significant. 
 

B. Ablation study 
 
PET and CT scans offer distinct advantages for 
pathological analysis, such as detecting necrotic liver 
regions due to low metabolism and similar density to 
infected liver issues in CT scans. PET scans have 
better spatial resolution on lesions, particularly 
malignant tumor tissues, while CT images accurately 
reflect organ tissue anatomy, locate lesions, and show 
morphology. Traditional multi-modal feature fusion 
networks have two encoders, but PET and CT 
branches do not benefit from each other in feature 
extraction. A more efficient approach is proposed, 
which uses convolution kernels to process PET and 
CT data simultaneously. To improve information 
transmission between FCB and decoder branch 
encoders extract feature volumes at different depths 
within the network. The feature fusion module then 
feeds these volumes to each feature co-learning block, 
allowing them to absorb multi-modal information at 
different resolutions. 
 

TABLE III: Results of 10-fold cross validation for 
hyper parameters in loss function. The 
performance is measured with dice per case score 
(%), [Mean ± Standard Deviation] 
        

 
 
TABLE IV: Different multi-modal fusion methods 
on 100 PET-CT dataset. The performance is 
measured with dice per case score and dice global 
score (%), [Mean _ Standard Deviation], and  
results of repeated measures statistical analysis of 

variance between different multi-modal co-
learning models. If the value of PR is lower than 
0.05, difference is statistically significant. 
 

Metrics of experimental scores 
 

Model Dice per 
case (%) 

Dice 
global 
(%) 

Hausdorff 
Distance 
(mm) 

2D U-Net two-
encoder 
(Baseline) 

58.75 ± 
1.08 

65.00 ± 
1.50 

69.2015 

2D U-Net two-
channel 

62.84 ± 
1.05 

63.79 ± 
0.75 

59.2646 

3D V-Net two-
encoder 
(Baseline) 

64.75 ± 
0.95 

65.17 ± 
1.08 

54.6039 

3D V-Net two-
channel 

65.39 ± 
1.02 

65.36 ± 
3.08 

61.0349 

Cascaded U-
Net 

55.05 ± 
0.99 

65.73 ± 
1.52 

59.2454 

Cascaded V-
Net 

67.48 ± 
1.08 

68.25 ± 
0.68 

67.4574 

2D U-Net two-
encoder + SDB 
+ HFCM 

66.82 ± 
1.07 

68.42 ± 
1.12 

58.2935 

3D V-Net two-
encoder + SDB 
+ HFCM 

68.98 ± 
0.65 

70.29 ± 
0.97 

56.1376 

Zhao et al. 67.24 ± 
0.73 

68.13 ± 
0.87 

68.1447 

Zhong et al. 68.85 ± 
0.97 

69.84 ± 
1.02 

57.4419 

Kumar et al. 69.07 ± 
0.48 

70.03 ± 
1.28 

65.2335 

ours  70.71 ± 
0.57 

71.40 ± 
0.45 

48.0264 

 

C. Comparison with previous works 
 

Our method compared with previous medical 
segmentation models using the same dataset, 
applying pre-processing and post processing steps. 
PET and CT data were fed into two branches for 
two-encoder models.The proposed model, 
combining CT scans across channels and output 
from the first component, outperforms state-of-the-
art deep neural networks and co-learning methods. 
It achieves a significant improvement in dice score 
with the same hyper-parameter settings, with a PR 
value of less than 0.05 indicating statistical 
significance. 

λ1 λ2 µ Dice per 
case (%) 

0.8 0.4 0.5 69.26 ± 0.75 

0.4 0.8 0.5 70.15 ± 0.56 

0.6 0.5 0.5 70.95 ± 0.77 

0.6 0.5 0.5 71.17 ± 0.58 

0.5 0.5 0.5 75.73 ± 0.52 



42          J. Sci.    Trans. Environ. Technov.2023 
 
 

 
 

 
Fig 5: Results of lesions that is obvious on both PET 
and CT images, only on CT images and only on 
PET images respectively. In each case, the first 
column corresponds to the original CT and PET 
images, the following five figures of the first row 
show the prediction results of the five different 
networks (two models with two encoder branches 
called TE, two Cascaded networks and our 
method), and the red delineations in the five 
remaining images of the second row show where 
the liver lesions were incorrectly segmented. The 
last column is the corresponding ground truth for 
these cases. 
 

V. DISCUSSION 
 
The experimental results show that our method 

outperforms previous techniques in locating 

large lesion regions (Kitao et al., 2009, Piscaglia et 

al., 2010, Goceri et al., 2016, Kono et al., 2017, 

Omata et al., 2017, Heimbach et al.,2018, Morgan 

et al., 2018, Wan et al., 2020, Lee et al., 2021, Xue 

et al., 2021, Zhou et al.,2021, Turco et al., 2022, 

Sridhar et al., 2023). The first group of lesions 

features is evident on PET and CT images, and all 

five models can accurately locate the largest 

lesion region. The SDB module complements 

feature information from PET and CT scans, 

resulting in less false positive and negative 

delineation. The method also performs well 

when liver lesions vary greatly, with feature 

maps of small resolution having wider receptive 

fields and better understanding of tumor edges. 

The fusion co-learning module in HFCM can use 

most features from different levels multiple 

times, providing abstract features and detailed 

edge information. In the first case of the third 

group, both cascaded methods miss small 

lesions, but our model can locate isolated and 

small lesions more precisely. 

 
The proposed model for liver lesion 
segmentation uses deep layers and features to 
improve performance. However, the model's size 
and fine morphological post processing require 
liver contour segmentation, which may not be 
conducive to its extensibility. The evaluation 
experiments are conducted on PET-CT scans, but 
other organs or modality scans may have 
different functional and structural information. 
The method has flaws in segmenting small 
lesions, such as the first and last groups, which 
could be caused by information loss due to image 
data resampling. Multimodal data alignment is 
necessary before feeding into deep learning 
models for better performance. To avoid 
registration deviations, concatenations between 
PET-CT encoder branches and FCB modules are 
only used. Furthermore should address these 
issues to improve the model's performance. 

 

CONCLUSION 
 

We suggest a computer-aided diagnosis system 
that combines a hand-crafted and deep feature 
too effectively difference atypical hepatocellular 
carcinoma and focal nodular hyperplasia. In this 
study, Hepatocellular melanoma is a common 
nasty excrescence with a low early opinion rate. 
PET-CT scans enhance clarity, particularity, and 
discovery capacity of micro-lesions. Our 
approach is executed in the PyTorch. Proposed a 
multi-modal co-learning network enhances 
image quality by detecting salient features 
during the emulsion process, enabling timely 
lesions identification. As a result, our algorithm 
holds significant potentiality for clinical usages in 
abnormal HCC diagnosis, the lesions on other 
organs or other modality scans may have other 
functional and structural information, which 
needs different hyperactive parameters and 
branches. We aim to address this in our future 
investigation. 
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